
FPGA Implementation of Lookup Algorithms

Zoran Chicha, Luka Milinkovic, Aleksandra Smiljanic
Department of Telecommunications

School of Electrical Engineering, Belgrade University
Belgrade, Serbia
zoran.cica@etf.rs

Abstract—The pool of available IPv4 addresses is being depleted,
comprising less than 10% of all IPv4 addresses. At the same time,
the bit-rates at which packets are transmitted are increasing, and
the IP lookup speed must be increased as well. Consequently, the
IP lookup algorithms are in the research focus again because the
existing solutions were designed for IPv4 addresses, and are not
sufficiently scalable. In this paper, we compare FPGA
implementations of the balanced parallelized frugal lookup
(BPFL) algorithm, and the parallel optimized linear pipeline
(POLP) lookup algorithm that efficiently use the memory, and
achieve the highest speeds.

Keywords - Internet router, IP lookup, FPGA

I. INTRODUCTION
Internet is still fast growing network. The number of hosts

is still increasing and the IPv4 address space is almost
exhausted. Actually, the Internet of “things” is being developed
to include a tremendous number of sensors which might be
attached to various machines and appliances. As a result of this
development, transition to longer IPv6 addresses is inevitable.
Packets generated by the increasing number of things on the
Internet will be directed through the routers based on their IPv6
addresses. The output port (i.e. next-hop) of each packet is
determined based on its IP address using the information from
the lookup table according to the specified IP lookup
algorithm. The lookup table contains forwarding information
for the network addresses that a router learned from other
routers in network. As the Internet is growing the lookup tables
are getting larger. Classless network addresses are aggregated
in these tables in order to consume a minimal amount of
memory, and the longest prefix match of the given IP address
should be found. The lookup table is typically split between the
internal and the external memories. The internal (on-chip)
memory is on the same chip as the lookup logic. The on-chip
memory has a large throughput, which allows parallelization
and pipelining that provide the high lookup speeds. However,
the on-chip memory is very limited, and should be, therefore,
carefully used. As the IP addresses get longer, the internal
memory requirements of the lookup table can become a
bottleneck. So, the existing internal memory should be used in
a way that would maximize the lookup speed for the largest IP
lookup tables.

In the literature, many lookup algorithms were proposed [1-
8]. Most of the algorithms are based on trees, since the tree
structure is a natural choice for a lookup table. However,
search through ordinary binary trees is not fast enough, so there

are many techniques to improve the lookup speed. Some of
these techniques are the path compression, multibit trees [3],
the level compression [8], bitmap techniques [1,3-5], leaf
pushing [5,9], the priority tree technique [6], hashing [7] etc.
The path compression is a technique where the paths in a tree
are compressed if they have no branching. In this way, the
number of the memory lookups is decreased. In multibit trees,
one node has 2m children as m bits are used for determining the
child in the next level, and this technique reduces the tree
depth. The level compression technique replaces the parts of
the binary tree that are populated above some threshold with
the multibit subtrees to efficiently reduce the depth of the tree.
The bitmap technique uses the compact binary presentation of
some parts of the tree (a subtree structure is presented with the
bitmap vector whose positions correspond to the nodes in the
subtree). It is usually combined with the technique that reduces
the number of pointers in a multibit tree. Namely, only one
pointer is kept in a node and it points to the first element of the
vector of pointers to the node’s children. Leaf pushing is used
to push the next-hop information from the internal nodes of the
tree to the leafs of the tree. The priority-tree technique fills
empty nodes in the early levels of a binary tree with the longer
prefixes. In this way the total number of nodes is reduced.
Hashing is a popular technique used to reduce the number of
memory accesses and increase the lookup speed. As one can
see, there are many techniques that can be used to achieve
higher lookup speeds, but usually they come with a price. For
example, some internal nodes with the next-hop information
can be masked with the leaf pushing technique or the multibit
trees, so updates get more complicated than in ordinary binary
tree, etc.

The parallel optimized linear pipeline (POLP) algorithm
has been proposed in [2]. The main idea of POLP is to split the
original binary tree into non-overlapping subtrees that are
distributed across P pipelines which comprise similar numbers
of nodes. Each pipeline is split into multiple stages, which
comprise similar numbers of nodes. Nodes are associated to the
stages so that the parent node must be in a different (and
earlier) stage than its children nodes. In POLP, the pipeline is
chosen based on the first I bits of the IP address. Then, the
longest prefix is searched within the selected subtree. One
memory is associated to each stage, and it is accessed when the
search reaches that stage. Multiple IP addresses are processed
simultaneously using the pipeline technique so that these
parallel searches use different stages at any point of time. In
this way high throughput is achieved.

This research was partially supported by Serbian Ministry of Science and
Technology.

2011 IEEE 12th International Conference on High Performance Switching and Routing

978-1-4244-8456-0/11/$26.00 ©2011 IEEE 270

In this paper, we propose the balanced parallelized frugal
lookup (BPFL) algorithm. BPFL is an extension of the PFL
algorithm [1]. The advantage of BPFL is that it frugally uses
the memory resources so the large lookup tables can fit the on-
chip memory. As in PFL, the next-hop information is stored in
the external memory, while the structure of the lookup table is
stored in the on-chip memory. In this way, BPFL allows
parallelization and pipelining that achieve faster lookups, as the
external memory is accessed only once at the end of the lookup
when the next-hop information is retrieved. The on-chip
lookup table is organized as a binary tree divided into levels
that are searched in parallel. Each level stores only non-empty
subtrees. The subtree prefixes are stored in the corresponding
balanced trees, unlike the PFL that stores the subtree prefixes
in registers. Usage of balanced trees significantly reduces the
number of required registers for lookup tables which enables
the support for larger lookup tables. If the subtree prefix is
found, the subtree bitmap vector is retrieved, and the node with
the longest prefix match of the given level is found based on
this subtree vector. In BPFL another improvement over the
PFL is introduced, as for sparsley populated trees only indices
of existing nodes are kept instead of complete bitmap vector.
This significantly reduces total memory requirements. Since
matches can be found at more than one level, the resulting
match is the one found at the highest level. Then, the output
port is found at the appropriate location of the external
memory. Since the pipelining is used, one IP lookup can be
performed per a clock cycle. The memory is used frugally by
storing only non-empty subtrees, and by optimizing the bitmap
vectors for sparsely populated subtrees. In this way, BPFL
supports large IPv4 and IPv6 lookup tables.

In order to provide fast lookups, the IP lookup algorithms
must be implemented in hardware. In this paper we present the
FPGA implementations of the BPFL and the POLP algorithms.
We chose these two algorithms because they consume the
small amounts of the internal memory which becomes a critical
resource in the case of IPv6 addresses. Finally, we compare the
implementations of BPFL and POLP in terms of the resources
that they consume, and the speeds that they achieve.

II. BPFL SEARCH ENGINE
The BPFL search engine will be described in this section.

First, its architecture comprising multiple levels will be
described. Then, the design of each level module will be
explained. A module at each level contains two parts, the
subtree search engine, and the prefix search engine. The
subtree search engine finds the location of the subtree which
contains the longest prefix in one of the balanced trees at the
given level, provided that such the longest prefix exists. The
subtree search engine then finds the longest prefix in the
located subtree.

Generally, the IP lookup engine comprises the control logic
and the lookup table. The lookup table contains the information
about its structure, and the information about the output ports
to which the incoming packets should be forwarded. These two
types of information can be split, and stored in the internal and
the external memories. Typically, the information about the
lookup structure is stored in the internal memory so that the
lookup speed could be maximized. It is important that this

information consumes as little memory as possible, so that it
can fit the on-chip memory even for very large lookup tables.
For this reason, BPFL is designed so that it frugally uses the
memory, and it particularly prudently uses the internal
memory. Only the next-hop information with the output ports
is stored in the external memory as it is accessed only at the
end of the lookup process.

Figure 1 shows the architecture of the BPFL search engine
which comprises multiple levels. The number of levels equals
L=La/Ds, where La is the address length, and Ds is the subtree
depth. Module of level i processes subtrees whose depths are
equal to Ds, and which are determined by the (i-1)∙Ds bits long
prefixes. So, module of level i processes only first i∙Ds bits of
the the IP address, and finds the prefix whose length is greater
than (i-1)∙Ds bits and less or equal to i∙Ds bits. The inputs of
any module are the IP address and the signal Search that
instructs the module to start looking for the longest prefixes.
Modules of all levels pass their search results to the final
selector. Here, a result is the location of the next-hop
information in the external memory (Next-hop_addr). Signal
Match_found is used to signal the search success. If modules
at more than one level signal the successful searches, then, the
selector chooses the result calculated at the highest level.
Finally, the external memory is accessed to retrieve the next-
hop information, i.e. the output port to which the packet should
be forwarded.

Figure 1. BPFL search engine top-level.

A module at level i contains two parts – the subtree search
engine and the prefix search engine as shown in Figure 2. The
subtree search engine processes balanced trees comprising the
prefixes of non-empty subtrees, in order to find the subtree
with the longest prefix of the given IP address, if such a subtree
exists. The prefix search engine processes these non-empty
subtrees of prefixes in the lookup table, in order to find the
longest prefix of the given IP address. If the longest prefix
match is found at the given level, the external memory address
of the next-hop information is passed to the final selector
shown in Figure 1.

Figure 2. Module at level i.

The subtree search engine is shown in Figure 3. It consists
of B non-overlapping balanced trees that store the subtree
prefixes. Balanced trees are so called because each node in
those trees has equal number of descendant nodes through the

271

left and the right branch. A range of prefixes with the length
equal to (i-1)∙Ds is associated to one balanced tree at level i. A
balanced tree is chosen by the balanced tree selector depending
on the range of prefixes to which the IP address belongs. The
balanced tree selector gives the address of the root of the
selected balanced tree. The selected balanced tree is traversed
based on the comparisons of its node entries to the given IP
address. If the (i-1)∙Ds long prefix of the IP address is greater
than the subtree prefix stored at the current node, then, the next
node (at the next level of the balanced tree) is the right node,
otherwise, the next node is the left node. If the subtree prefix at
the node equals the IP address prefix, the following balanced
tree levels are just passed to enable pipelining while carrying
the address of the balanced tree node with the IP address prefix
and the balanced tree index. The subtree address is calculated
using this node address. Signal Found_j is used to inform the
succeeding balanced tree levels that the subtree has been found,
while signal Subtree_found is used to inform the prefix search
engine that the subtree has been found. In order to frugally use
the on-chip memory, balanced tree nodes do not store pointers
to their children. Instead, locations (addresses) of all nodes in
each balanced tree are predetermined. For the sake of
simplicity, the left child address is obtained by adding ‘0’
before the parent’s address, and the right child address is
obtained by adding ‘1’.

Figure 3. Subtree search engine at level i.

The prefix search engine is shown in Figure 4. It consists of
the bitmap processor and the internal memory block. Elements
of the complete bitmap vector are ones, if the corresponding
nodes in a subtree are non-empty. However, if the subtree is
sparsely populated, the bitmap vector would unnecessarily
consume large number of memory bits. In this case, it is more
prudent to store a list of indices of non-empty nodes. In our
design, if the number of non-empty nodes is below the

threshold, their indices are kept in the internal memory;
otherwise, the complete bitmap vector describing the subtree
structure is stored in the internal memory. In both cases, the
external subtree address is stored in the internal memory
together with its bitmap vector. The next-hop information
related to the nodes of some subtree are stored in the external
memory starting from the external subtree address. The prefix
search engine finds the longest prefix of the IP address within
the subtree based on either the list of non-empty nodes or the
bitmap vector. The prefix search engine forwards this result to
the final selector together with the signalization of the search
success, and the external memory address where the next-hop
information resides. The external memory address of the next-
hop information is determined based on the external subtree
address, and the index of the node that corresponds to the
longest prefix of the IP address at the level in question.

Figure 4. Prefix search engine at level i.

III. POLP SEARCH ENGINE
The POLP search engine will be described in this section.

First, the architecture of the search engine will be described.
The POLP search engine comprises multiple pipelines. The
design of these pipelines will be explained as well.

In POLP, the original binary tree is split into non-
overlapping subtrees. These subtrees are then split among
multiple pipelines, so that these pipelines contain similar
numbers of nodes, as shown in Figure 5. The pipeline is
selected by the pipeline selector based on the first I bits of the
IP address. Outputs of the pipelines are connected to the final
selector. It selects the result from the activated pipeline,
calculates the external memory location of the next-hop, and
accesses the calculated location to retrieve the next-hop
information.

Figure 5. POLP search engine top-level.

The inputs of the pipeline selector are the IP address and
the signal Search that activates the search engine as in the case

272

of BPFL. The pipeline selector, then, activates the pipeline that
holds the subtree of interest, and passes the relevant part of the
IP address (remaining 32-I bits) to it as shown in Figure 5. The
pipeline selector is a simple memory block addressed with I
bits. Each location corresponds to one subtree, and contains the
pipeline ID that holds the subtree, and its root node location. If
the subtree does not exist, then, a specific constant is stored in
corresponding location to signal that the subtree does not exist.
The pipeline selector also holds the bitmap vectors for subtrees
which are shorter than I bits, so that the lookup for short
prefixes is performed by the pipeline selector. In the case of
longer IP addresses, the output of the pipeline selector is passed
to the selected pipeline. Activated pipeline searches the
selected binary subtree based on the remaining 32-I bits. Since
the pipelining is used, a new search can begin in the next clock
cycle.

Each pipeline consists of F stages. Each node is assigned to
one stage of the pipeline, while its children cannot be in the
same stage to enable pipelining. Nodes are balanced over the
stages, so that similar numbers of nodes are assigned to all
stages. Children nodes of the given node do not have to be in
the next stage. To enable this feature, a pointer in the subtree
node holds the stage information where its child is placed, as
well as its memory location. To avoid using of two pointers,
we place the children of one node into two successive locations
so that only one pointer is used. The pipeline structure is given
in Figure 6. Each stage sends to the next stage the first 32-I bits
of the IP address, the position of a bit in the subtree that is next
to be processed, the stage and the location of the next node, the
current result of the search, and the Search indicator that
signals that the search is in progress. Signal Next-hop_addr
carries the address of the next-hop information in the external
memory of the best match found in the previous stages. Control
signal Match_found denotes whether the information in Next-
hop_addr is valid or not. The last stage in the pipeline will pass
only these two signals to the final selector.

Figure 6. Pipeline structure.

Each stage contains a memory block that holds the nodes of
the subtrees assigned to the pipeline under observation. One
memory location contains the next-hop bit, the left-child bit,
the right-child bit and the children pointer, shown in Figure7.
The next-hop bit is set to ‘1’ if the corresponding node holds
the next-hop information, otherwise it is set to ‘0’. The left-
child bit and the right-child bit determine the existence of the
left child and the right child, respectively. Children pointer
contains addresses of the stage and of the memory location of

the children nodes. Besides the memory block, each stage
contains also the control logic and the delay element. The
control logic processes the data read from the memory or
passes the signals from the previous stage to the next stage if
the next node does not reside in the current stage. If the current
stage is the addressed stage, and its node carries the next-hop
address, this next-hop information should replace the next-hop
address received from the previous stage. The next-hop address
in the external memory is calculated based on the stage and the
(internal) memory location of the node that carries the best
match. The delay element is needed when the current stage is
addressed (holds the node of interest) to delay signals from the
previous stage as the memory read cycle introduces delay. The
delay element is used even when the stage is not addressed to
enable efficient pipelining without queues.

Figure 7. Stage i structure.

IV. PERFORMANCE ANALYSIS
In this section, we analyze the performance of the BPFL

and POLP implementations. In the analysis we used three
realistic lookup tables of different sizes (71K, 143K and 309K
entries) to evaluate the performance of these two lookup
algorithms for smaller and larger tables. The FPGA chip used
for implementation is the Altera’s Stratix II EP2S180F1020C5
chip [10]. The SRAM memory is used as the external memory.
Since the existing IPv6 lookup tables are still small [11], we
anticipated future large IPv6 lookup tables according the
methodology proposed in [12]. The IPv6 lookup tables are
derived from the existing IPv4 lookup tables [13]. Length of
each prefix in the IPv4 lookup table is doubled, and 25% of
them are moved to the closest odd number. Bits are added to
the IPv4 addresses so that the desired density of non-empty
subtrees in the IPv6 lookup table is achieved. The density of
subtrees is set to be 2-4 times lower than in the IPv4 lookup
tables because they occupy the larger address space.

TABLE I
RESOURCE USAGE FOR BPFL IN THE CASE OF IPV4

Table
Size LE Memory

[Mb]
SRAM
[MB]

fmax
[MHz]

71K 15.1K
(11%)

1.93
(21%) 0.61 119

143K 19.4K
(13%)

2.8
(30%) 0.8 113.6

309K 27.9K
(19%)

5.6
(60%) 1.68 96.1

273

TABLE II
RESOURCE USAGE FOR BPFL IN THE CASE OF IPV6

Table
Size LE Memory

[Mb]
SRAM
[MB]

fmax
[MHz]

71K 52.1K
(36%)

4.03
(43%) 0.32 110.5

143K 61.1
(43%)

6.33
(67%) 0.76 106.3

309K 89.7
(63%)

8.86
(94%) 0.95 99.9

Tables I and II show the chip resources required for the

BPFL implementation in the case of IPv4 and IPv6 lookup
tables, respectively. In both tables, the stride length is Ds=8, so
that the IPv4 tables have up to four levels, while the IPv6
lookup tables have up to eight levels. One can observe that the
chip resources are fully utilized only in the case of the largest
IPv6 lookup table. So, the larger IPv4 tables can be supported
by the selected FPGA chip, while for the larger IPv6 tables a
more advanced FPGA chip would be needed. It can be
observed that more internal chip resources are used in the IPv6
case, due to the longer IPv6 addresses. But, the SRAM
memory requirements are lower in the IPv6 case, because more
subtrees have the lower density, and, their storage is more
efficient. Since pipelining is used, one lookup can be
performed per one clock cycle. So, even in the worst tested
case, the throughput of around 96 millions lookups per second
was achieved.

TABLE III
RESOURCE USAGE FOR POLP IN THE CASE OF IPV4

Table
Size LE Memory

[Mb]
SRAM
[MB]

fmax
[MHz] P No of

FPGA

71K 9.8K
(7%)

8.81
(94%) 0.48 110.6 10 2

143K 6.6K
(5%)

9.17
(98%) 0.76 107.6 9 3

309K 6.6K
(5%)

9.17
(98%) 1.18 107.6 15 5

TABLE IV

RESOURCE USAGE FOR POLP IN THE CASE OF IPV6
Table
Size LE Memory

[Mb]
SRAM
[MB]

fmax
[MHz] P No of

FPGA

71K 29.3K
(20%)

3.4
(36%) 0.43 146.5 6 2

143K 10.4K
(7%)

9.08
(97%) 1.9 123.2 9 9

309K 10.4K
(7%)

9.08
(97%) 3.08 123.2 15 15

Tables III and IV show the chip resources required for the

POLP implementation for IPv4 and IPv6 lookup tables,
respectively. In our design we did not use I=8, like in [2]. We
used I=16 to lower the total number of the stage memories as
they are limiting the scalability of the POLP implementation on
the FPGA chips. Because of its large memory requirements,
the complete POLP design cannot fit one FPGA chip. For
example, in the IPv4 case, one pipeline must contain at least
F=17 stage memories when I=16 to fit the deepest possible
subtrees. Size of the stage memory decreases when the number
of pipelines increases, because the nodes are balanced over the
pipelines and the stages. By changing the number of pipelines,
the stage memories can be adjusted to better fit the available
FPGA memory blocks. For each lookup table, we found the

optimal number of pipelines in the POLP design for which the
minimal number of the FPGA chips is needed, as shown in
Tables III and IV. In both tables, the required chip resources
are given per one FPGA chip, and the last two columns show
the total number of pipelines, P, and FPGAs. The capacities of
the external SRAM memories required for different lookup
tables are also shown in tables.

It can be seen from Tables I, II, III, and IV, that the BPFL
algorithm uses much smaller internal memory than the POLP
algorithm. In addition, the memory blocks are better utilized in
the case of the BPFL algorithm. As a result, the total on-chip
memory requirements are significantly lower for BPFL than for
POLP, so that the BPFL design can fit one FPGA chip, while
the POLP design requires multiple FPGA chips which makes it
costly and impractical. BPFL uses more logical elements due to
the balanced tree selector that requires a large number of
registers and comparators. However, logic elements required
for the BPFL design can fit a single FPGA chip even for the
largest IPv6 lookup table. The speeds of both algorithms are
similar. The pipelines in POLP can serve multiple ports
simultaneously, which would reduce the required number of
FPGA chips per port. But then, a portion of the internal
memory must be allocated to each pipeline for keeping the
search requests. Also, in order to achieve full parallelization,
the external SRAM memory should be allocated to each
pipeline, which stores the next-hops corresponding to the
prefixes in that pipeline. Since the POLP design requires
multiple chips, it increases the complexity of the board design,
and the overall router’s cost.

TABLE V
COMPLEXITY OF THE WORST CASE UPDATE

Table Size IPver BPFL POLP

71K IPv4 8K 28K
IPv6 16K 42K

143K IPv4 8K 48K
IPv6 33K 80K

309K IPv4 16K 48K
IPv6 65K 80K

Updates of the lookup tables are typically processed at the

control plane of the router, and then, modified lookup tables
are downloaded to the packet processors which are
implemented in hardware. In this way, a complex update logic
at the data plane for each search engine is avoided. The central
processor can process the updates sequentially since they are
much less frequent than the lookups. Updates in both
algorithms typically have a moderate complexity. In BPFL, an
update is easy in the case when a subtree already exists, and
only its bitmap needs to be changed. When a subtree itself
needs to be added or deleted, a balanced tree might need to be
restructured, i.e. the nodes in the balanced tree might need to
be moved to new positions. In the case of fully populated
balanced trees, one fourth of nodes need to be moved on
average. In the case of POLP, adding a new node can trigger a
migration of multiple nodes to the earlier stages in order to
provide sufficient number of stages for the path that includes
the newly added node. The complexity in this case depends on
the subtree size. Also, when the first prefix of some subtree
needs to be added to the lookup table, it would require F/2
memory accesses on average, where F/2 is the number of

274

stages. Finally, in order to keep the pipelines balanced, subtrees
might need to be moved from pipeline to pipeline. The
processing complexities in mentioned realistic cases, are
similar for POLP and BPFL algorithms.

The worst case update of the lookup table in BPFL is when
there is only one empty node in the subtree search engine so
that all the nodes must be moved when a new prefix is to be
added at the given level. The processing complexity in this
worst case comprises (2Db-1)∙B memory accesses, where Db is
the balanced tree depth in the level with the largest number of
nodes, and B is the total number of balanced trees in the same
level. The worst case for updates in POLP is when two largest
subtrees need to exchange their places in two different
pipelines so that a new prefix could be added to one these
subtrees. We estimate the size of these large subtrees to be
(F-log2Nn+1)∙Nn. Namely, the upper levels of these trees double
in each stage, until they reach the size of the stage memory;
then, the lower levels comprise Nn nodes. So, the worst case
processing complexity comprises 2∙(F-log2Nn+1)∙Nn memory
accesses when POLP is used. It should be noticed that in both
algorithms, the probability of the described worst cases is very
low. Table V gives the worst case complexity for the lookup
tables used in this paper. It can be seen that BPFL has the
lower worst case complexity of the lookup table updates.
However, the described worst cases are not very likely, while
in more probable cases the update complexities are
significantly lower for both algorithms.

V. CONCLUDING REMARKS
In this paper we presented FPGA implementations of two

lookup algorithms, POLP and BPFL, and compared them.
FPGA chips are attractive devices for implementation of the
data plane functionalities because of their speed and flexibility.
Both algorithms achieve high lookup speeds. However, our
BPFL algorithm more scalable than the recently proposed
POLP algorithm. Namely, POLP requires multiple chips even
for the lookup tables of a moderate size, while BPFL requires

only one FPGA chip for the largest lookup tables on the
Internet. Since the implementation complexity of the BPFL
algorithm is fairly low, it is a promising lookup algorithm
which can support the IPv6 addresses that are spreading on the
Internet.

REFERENCES

[1] Z. Čiča, A. Smiljanić, “Frugal IP Lookup Based on Parallel Search, ”
15th International Workshop on High Performance Switching and
Routing 2009, Paris, France, June 2009.

[2] W. Jiang, Q. Wang, and V. K. Prasanna, “Beyond TCAMs: An SRAM-
based parallel multi-pipeline architecture for terabit IP lookup,” Proc. of
IEEE INFOCOM, April, 2008.

[3] D. Taylor, J. Lockwood, T. Sproull, J. Turner, D. Parlour, “Scalable IP
Lookup for Programmable Routers, ” Proc. IEEE INFOCOM 2002,
vol.21, no.1, pp.562-571, June 2002.

[4] D. Pao, C. Liu, A. Wu, L. Yeung, K.S. Chan, “Efficient Hardware
Architecture for Fast IP Address Lookup, ” IEE Proceedings on
Computers and Digital Techniques, vol.50 , no.1, pp.43-52, January
2003.

[5] R. Rojas-Cessa, L. Ramesh, Z. Dong, L.Cai, N. Ansari, “Parallel-Search
Trie-based Scheme for Fast IP Lookup,” GLOBECOM 2007, pp. 26-30,
November 2007.

[6] H. Lim, J. H. Mun, “An Efficient IP Address Lookup Algorithm Using a
Priority Trie,” GLOBECOM 2006, pp. 1-5, November 2006.

[7] M. Bando, N.S. Artan, J. Chao, “FlashLook: 100-Gbps Hash-Tuned
Route Lookup Architecture, ” 15th International Workshop on High
Performance Switching and Routing 2009, Paris, France, June 2009

[8] S. Nilsson, G. Karlsson, “IP-Address Lookup Using LC-Tries,” IEEE
JSAC, vol. 17, no. 6, pp. 1083–1092, June 1999.

[9] V. Srinivasan and G. Varghese, ”Fast Address Lookups using Controlled
Prefix Expansion,” Proc. ACM Sigmetrics 98, June 1998.

[10] www.altera.com
[11] http://bgp.potaroo.net
[12] M. Wang, S. Deering, T. Hain, L. Dunn, “Non-random Generator for

IPv6 Tables,” Proc. of IEEE. Symposium on High-Performance
Interconnects, pp. 35-40, August 2004.

[13] http://psp1.iit.cnr.it/~mcsoft/ast/ast_data.html

275

